Les trous de ver sont des incontournables des films de science-fiction. Dans l’idée, ils permettraient à des voyageurs de l’espace de se déplacer plus vite que la lumière entre deux points extrêmement éloignés l’un de l’autre dans l’univers. L’étude de la théorie classique de la relativité générale d’Einstein montre cependant que ces « tunnels » ne sont pas traversables par la matière, et les physiciens ne savent toujours pas si des effets quantiques pourraient infirmer cette conclusion. Tout cela est néanmoins en train de s’éclaircir grâce à des études récentes, qui offrent des éléments de compréhension sur la façon dont des trous de ver pourraient exister dans une théorie quantique de la gravitation. Et ceci en résolvant le « paradoxe de l’information » de Hawking1.
Les trous noirs : portails de l’espace ?
Les trous de ver sont généralement représentés comme un cylindroïde reliant deux feuilles (ou plans) de l’univers – un tunnel entre deux trous noirs. Dans la description dite classique de la relativité générale (qui néglige les effets quantiques), il est impossible de traverser un trou de ver sans invoquer des effets exotiques tels que le voyage dans le temps.
De plus, si un trou de ver relie deux trous noirs et que les trous noirs absorbent tout ce qui se trouve près d’eux – même la lumière – ne serait-il pas possible de passer à travers tout en échappant à la force de la gravité de l’autre côté ? Pour expliquer cela, certains physiciens ont donc théorisé que des effets « quantiques forts » sont en jeu. C’est notamment le cas de Juan Maldacena (Institute of Advanced Study de Princeton) et Xiao-Liang Qi (Université de Stanford)2, qui ont récemment pu confirmer en partie cette hypothèse.
Ce duo de physiciens a montré dans un modèle très simplifié que l’on peut construire des états quantiques d’« énergie négative » produisant un trou de ver traversable. L’énergie négative (que l’on croit d’ailleurs responsable de l’expansion accélérée de l’univers) est l’énergie qui s’oppose à la force de gravité et qui maintiendrait ouverte la « bouche » d’un trou de ver.
Les effets quantiques
Ce qui est le plus intéressant physiquement dans l’hypothèse de Maldacena et Qi n’est pas tant la possibilité de trous de ver traversables. Ce serait plutôt son apport au « paradoxe de l’information » énoncé par Stephen Hawking – un domaine de recherche très actif34 !
Un trou noir est formé lorsqu’une étoile très massive meurt, et que son noyau résiduel a une masse trois fois supérieure à celle du Soleil. Les trous noirs de cette taille sont si denses qu’ils courbent l’espace-temps qui les entoure à un tel point que rien ne peut s’en échapper, pas même la lumière. Mais même si les trous noirs absorbent tout, Hawking avait prédit en 1974 qu’ils pourraient eux-mêmes émettre certaines particules sous la forme d’un rayonnement (c’est le « rayonnement de Hawking »)5. Ces particules sont créées par des événements dits « quantiques » se trouvant en bordure du trou noir (l’horizon des évènements ou « le point de non-retour »).
Selon la théorie quantique, le vide de l’espace n’est pas un véritable vide, mais contient des « particules virtuelles » : des paires composées d’une particule subatomique et de son antiparticule (un électron et un positron, par exemple). Ces particules peuvent apparaître brièvement dans une fluctuation quantique aléatoire, avant de s’annihiler mutuellement.
La situation est toute autre à l’horizon des événements où l’une des paires peut tomber dans le trou noir tandis que l’autre s’en échappe et devient une particule réelle. Ce processus puise de l’énergie (gravitationnelle) du trou noir, ce qui diminue sa masse effective. Le trou noir s’évapore donc lentement, tandis que la radiation de Hawking s’échappe de sa surface. Cette radiation est extrêmement faible, et en théorie, un trou noir d’une masse solaire mettrait 1058 milliards d’années à s’évaporer complètement – alors que l’univers n’a même pas 14 milliards d’années.
Les liens inextricables
Cette évaporation pose également un autre problème théorique difficile à résoudre et en lien avec l’« intrication quantique » (un processus par lequel des particules deviennent inextricablement liées). Les particules émises par le rayonnement de Hawking sont intriquées avec l’état quantique décrivant le trou noir. Mais, si le trou noir finit par complètement s’évaporer – et donc par disparaître – cela mettrait fin à l’état quantique permettant aux particules du rayonnement de Hawking de s’intriquer. Donc, suivant la théorie quantique, il devrait pouvoir se produire une situation dans laquelle une particule serait absorbée par le trou noir alors même que son antiparticule « s’évaporerait »…
Pour surmonter ce paradoxe apparent, les théoriciens pensent pour la plupart que le rayonnement de Hawking n’est maximalement intriqué avec le trou noir que pendant la première partie de son évaporation (à peu près sa « demi-vie »). Dans une seconde partie, le trou noir émettrait un rayonnement intriqué avec le rayonnement émis aux premiers instants de sa vie. Ainsi, une fois qu’il s’est évaporé, l’intrication quantique ne serait qu’entre des particules rayonnées à des moments distincts dans le temps.
Les états semi-classiques
Pour les physiciens, le défi est de fournir une explication quantitative à ces idées en utilisant une théorie quantique de la gravitation. L’approche dite semi-classique (appelée ainsi parce qu’elle décrit la matière dans et autour des trous noirs à l’aide de la théorie quantique, mais décrit la gravité à l’aide de la théorie classique d’Einstein), considère les effets quantiques comme faibles.
Personne n’a été en mesure de donner une description satisfaisante de ce phénomène. Selon Maldacena et Qi, l’explication se trouve dans l’idée que lorsqu’un trou noir est jeune, la description classique du rayonnement de Hawking demeure. Mais, avec le temps, de nouveaux états semi-classiques, impliquant un trou de ver qui lie le trou noir au rayonnement qu’il a émis à ses débuts, deviennent plus importants. À mesure que le trou noir s’évapore, ces nouveaux états finissent par inclure des trous de ver à l’extérieur du trou noir. Ces nouveaux trous de ver décrivent l’intrication quantique entre les deux phases du rayonnement.
Finalement, ces trous de ver sont virtuels et il n’est pas question de les traverser, mais ils jouent un rôle important dans la description du phénomène d’évaporation des trous noirs. Même si leurs modèles restent très simplifiés, les chercheurs peuvent désormais décrire avec précision l’entropie d’intrication – qui mesure le taux d’intrication entre le rayonnement et le trou noir – et de montrer qu’il suit une courbe dite de Page6, de telle sorte à résoudre le paradoxe de l’information de Hawking.